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A mathematical model of  high-temperature induction heating of  a two-layer bimetallic cylindricar, 
specimen with an allowance for the effect of thermoelastoplastic loading has been developed on the basi.~ 
of  the inverse problem method. The results of  a mathematical experiment on determining the optimum 
heating conditions connected with abrupt changes in the inductor's dynamic parameters are provided. 

1. Bimetallic or trimetallic billets and finished parts made of alloys with different  physicochemical characteristics 
are finding application to an ever increasing extent in various branches of  the national economy as one of ~he most 
economic methods of ensuring the required quality of parts. 

A constraining factor in developing specific technologies for  processing actual bimetallic materials is the lack 
of practical ways of estimating the contact stresses and temperature fields at the interface between actual part:; and, as 
a consequence, the inevitable use of prolonged, slow heating in special protective atmospheres (for instance, an oxidizing 
atmosphere). The latter complicates production and raises costs to a considerable extent. 

A two-stage procedure can be used for reducing the time of preliminary induction heating of such specimens: 
As the material surface loses its magnetic properties (passage through the Curie point), possibly with a certain lag, the 
current amplitude I increases in the inductor simultaneously with an increase in its f requency f [1]. This procec ure also 
ensures a uniform temperature distribution over the specimen's cross section with the allowable temperature drop in the 
external layer throughout the time interval. The reduction in the heating time resulting from this makes it po;sible to 
reduce the processing costs and steel wastage due to oxidation. 

We are concerned with approbation of the method for calculating the temperature and elastoplastic fields in a 
bimetallic specimen with the aim of determining the optimum conditions of heating control. The problem of  determining 
the inductor current with respect to the experimentally assigned temperature conditions at the specimen's s t r face  is 
solved first. The solution of  such a problem, which belongs to the class of inverse problems [2, 3], makes it possible to 
realize a mathematical experiment in a wide range of control parameters without complicating the model. In ~grder to 
solve this problem, we shall modify somewhat the special regulating algorithm proposed in [4] for  calculating the control 
in heating monometallic parts. 

2. In stating the problem of determining the temperature field in the specimen T(r, t) (the cross section is shown 
in Fig. 1), we shall consider, in contrast to [4], the radiative heat exchange at the outside surface of  the cyl inder  which, 
as before, is assumed to have an infinite extent. 

Under these assumptions and for the assigned induction current parameters, the mathematical model of the 
heating of a bimetallic specimen is described by the following conditions: 
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Here and below, the values s = 1, 2 pertain to the characteristics of metals I and II, respectively, 3~ is the thermal 
conductivity, c is the specific heat, 7 is the density, h is the coefficient of heat transfer at the surface, b is the 
Stefan--Boltzmann constant (equal to 5.67.10 -8 W/(m~'.K4)), X is the degree of  blackness of the solid (equal to 0.8), q is 
the heat source, and t is the over-all  time of  induction heating. 

The density of  heat sources q = 1/2 Ps (T) I aH, /0r  [ ~ is calculated by solving the Maxwell equations and, 
correspondingly, the following boundary-value problem: 
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Here, H(r, t) is the strength of  the magnetic field, p is the resistivity, n is the number of  inductor windings per unit 
length ( l /mm) ,  I is the inductor current,  # is the permeability, f is the current frequency: to = 2~rf (f  = f l ,  T(R=) < TaK; 
f = fg., T(R~) >__ T=K), and T2 K is the temperature at the Curie point of  material II. 

For the assigned thermal and electromagnetic characteristics of  the materials (A = 3~(T), c = c(T), "t = -/(T), # = 
#(T), P = p(T)) and for  each set of the control parameters (I(t), f l ,  f=), the nonlinear system of  equations (1)-(6) is solved 
by means of  the iteration difference scheme, which has an accuracy of the order of O(&r 9" + At) and is implicit with 

respeet to time [5]. 
The modification of  the t r ia l -and-error  method proposed in [6] was used in the program developed for our 

inhomogeneous medium. On the whole, such a program performs the function of  the "sensing element" for  the 
temperature field for  the assigned parameters which control the operating conditions. 

3. In stating the inverse problem, we consider that the values of  f l  and f2 are assigned in advance, which 
corresponds to the use of  standard ac current  sources. The opportunities provided by deviation f rom the standard can 
always be determined by direct variation of  these parameters. Then, the object of  the inverse problem is to determine 
the function I = I(t) along with the temperature field. 

For the statement of  the problem, it is sufficient to assign the additional surface temperature of  the specimen 
~(t) and the tolerance 6 for the deviation from this temperature [4]: 

-7 
F {I) = .f trine, t ) -  @)l dt (7) 

0 

Here, ~(t) is the temperature determined experimentally, and T(R 2, t), which is calculated from conditions (1)-(6), is 
the surface temperature,  which thereby constitutes the functional of  I(t): T(R 2, t) ~ T[R 2, t, I(t)]. 

As additional information on the quantity to be determined that would enhance the stability of  the 
approximation, we use the assumption that the I(t) function is everywhere "continuous," with the exception of  a small 
time interval corresponding to the neighborhood of  the Curie point (for material II), and the condition I(t) ___ 0 for  any 

t. 
The realization of  both these sets of  conditions can be secured within the framework of  the step-by-step 

algorithm, in a manner similar to that used in [4], over any time segment [tj, tj_l]: 
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Fig. 1. Cross section of the bimetallic specimen. 
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Fig. 2. Physical characteristics of the materials of specimens, a) Specific 
heat; b) density; c) thermal conductivity; d) resistivity; 1) U8 steel, T2 K 
= 730~ 2) RIB steel, T~ K --- 780~ (c, cal(g.~ % g/cmS; A, 

o . kcal/m.p. C, p, fl.cm). 

For the realization of (8) in practice, it is sufficient to minimize, as in [4], the "local misclosure" functional Fj(I) 
over each following time segment, for instance, by means of the Newton--Gauss method [7], using the alread~ found 
value Ij_ 1 as the initial approximation. 

The condition for Ij to be nonnegative can be realized by using the "projection" method: In our problem, if a 
negative value is obtained, it is sufficient to substitute zero for it in the next time segment. 

In view of the connectedness of problems (1)-(6), the resultant temperature field is calculated "simultaneously" 
with the control current. We have solved this inverse problem for a bimetallic specimen consisting of materials similar 

283 



# 5 0 -  

o 

,, - H 

/ o o  

a 

I 
200 300 

Z": 
/000 ./. �9 

0 I00 200 

Fig. 3. Recovery  of  the control current  with respect to experimental  data. 
a) Current  as a function of time; b) temperature field at the surface (1) 
and the axis (2) of  the specimen. I) Experimental  data; II) calculations 
based on the current  f rom (a); R 2 = 32.5 mm; R 1 = 27.5 mm; f l  = 2400 Hz; 
f2 = 10,000 Hz; I is given in amperes; t is given in seconds. 
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Fig, 4. Tempera ture  field characteristics: temperature  at the surface, r = 
R~. (2); at the interface, r = R 1 (1); at the specimen's  axis, r = 0 (0); R 2 = 
50 ram; R 1 = 40 ram; f l  = 50 Hz; f2 = 1000 Hz; 11 = 850 A; 12 -- 1350 A. 

Fig, 5. Dependences of  the temperature field characteristics on the 
inductor current  f requency ( temperature at the surface, r = R 2 (2); at the 
interface,  r = R 1 (1); at the specimen's axis, r = 0 (0)); R 2 -- 50 mm; R I ---- 
40 ram; 11 = 19. 1222 A; f l  -- 50 Hz; f~ = 2500 Hz (I); I000 Hz (II); 500 Hz 
(III). 

to those used in practice: an outside layer made of  R 18 steel (material II  in Fig. 1) and a core consisting of  U8 steel 
(material I). The physical characteristics of  these materials are represented in Fig. 2. 

In the exper iment  per formed under laboratory conditions at Likhachev Automobile Plant (ZIL),  the geometric 
parameters of  the specimen were the following: R 1 = 27.5 ram; R 2 = 32.5 ram. The specimen was heated by current at 
the f requency f l  = 2400 Hz over a period of  0-170 sec, followed by a 10-sec pause, connected with transferring the 
specimen to another inductor. The duration of heating in the latter was equal to 90 sec at the current  frequency f~. = 
10,000 Hz. During the heating process, the temperature fields at the surface of the specimen, inside it, and at its axis 
were measured by means of  thermocouples.  

These data were actually used as indirect information on the current  behavior  in t ime for  recovery of  the current 
within the f ramework  of  the above statement of  the inverse problem. The result of  its solution is given in Fig. 3a. 
Evidently,  the pieeewise continuous curve that has been chosen according to the algorithm f rom the set of  continuous 
functions approximates  the actual distribution, which comprises the pause. The points in Fig. 3b represent the 
temperature values calculated with respect to the current determined, which are compared with the experimental  data. 
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Fig. 6. Loading model with linear strain hardening: try) 
instantaneous yield point; e Pi) cumulative plastic 
deformation; E) elasticity (Young) modulus; E s) shear 
modulus in the plasticity region. 
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Fig. 7. Thermomechanical  characteristics of the materials, a) Linear 
expansion coefficient; b) elasticity modulus: 1) U8 steel, 2) RI8  steel; c) 
shear modulus: 1) R18 steel, 2) U8 steel; yield point: 3) R18 steel, 4) U8 
steel; -~, 1/deg C; E, E s, and ay ~ kgf /mm 2. 

The satisfactory agreement between the temperature fields confirms the eff iciency of  our algorithm. The greater 
difference between the fields at r = 0 can be explained by the discrepancy between the steel parameters in the core 
determined theoretically and in experiments. 

4. The solution of the inverse problem of determining the control current with respect to data f rom iadirect 
observations not only serves for  checking whether the model adopted reflects adequately the actual process, but also 
provides an idea of the character and level of the control current even if  its behavior is not known beforehand. With an 
accuracy sufficient for  practical purposes and in correspondence with actual conditions, this behavior can be compared 
with the piecewise continuous function I(t) = I1(r (t)--r  I2r where 11 and 12 are constant values, r k = 
rk(T K) is the instant of time at which the surface temperature passes through the Curie point, and r is the Heaviside 
function (0 if  t _< 0; l i f  t > 0). In this, the order of  magnitude of 11 and 12 is known. 

This makes it possible to solve by means of a computer the problem of  optimum control of  the technological 
process of high-temperature heating of  a bimetal within a realistic range of the control parameters: p = {I 1, I2; fl ,  f2} 
E P .  

In our case, the optimum-control  problem consists in determining the parameter p so that the heating to the 
assigned temperature T (~ 1200~ isaccomplished in the minimum time under the condition that the temperatuJ~e drop 
in the outside layer of  the bimetal (6 = 50~ does not exceed the assigned value. 

It is assumed that, with such a temperature drop, the thermal stress field in this region does not produce 
fractures or residual effects. As will be shown in section 5, this assumption admits of  verification in a mathematical 
experiment. 
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Fig. 8. Distribution of the process characteristics in time at different  
instants of  time: a) stress tensor components: 1) art; 2) a@; 3)a,.z; b) 
temperature; R 2 = 50 mm; R 1 = 30 ram; fx = 50 Hz; f~. = 2500 Hz; I 1 --- 625 
A; 12 = 1125 A; r is given in millimeters. 
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Fig. 9. Distribution of the stress intensity in time for the 
optimum control variant (see Fig. 4). 1) At r = 0 (material 
I); 2) at r = R 1 (material I); 3) at r -- R 1 (material II); 4) at 
r --- R 2 (material II); yield point: 5) material I; 6) material 
II. 

In view of the fact that a small, discrete set of frequencies is used in practice, then, for  the sake of  economy, 
we naturally consider the problem of optimization with respect to I = {11, 12} for a f ixed pair f = {fl, f2}. The 
temperature field then depends functionally on I: T = T[(r, t, I]: 

We introduce the following functional: 41(1) -- {T[R 2, t, I] - -  T[R 1, t, i]} 2 and define the total heating time t = 
t(I) assigning by the condition T[R 2, t, I] --- T. Then, the optimum control problem stated above is formulated for any 
in the following manner: 

- a rg infT~) ,  pE {0, [ )CP,  (I) ,(I)~-6 ~, /CLIO, 71}. (9) 

As a possible algorithm for solving this prob~m,  we can obtain, by us inga  previously assigned grid, a sample 
of t values f rom among those for  which inf  ~t (I) ___ 62. The solution of the inf  @t(I) problem (similar to the problem of 

(7,5ep 
the quasi-solution [2, 3]) does not involve fundamental difficulties. 

Figure 4 shows the temperature field characteristics for one set of  geometric parameters and f under optimum 
conditions. The heating duration is equal to t = 520 sec for this variant. It is evident that control of  this type is 
efficient,  and the temperature drop in the outside layer is reduced even more after the current is switched. 

The temperature field characteristics under optimum operating conditions for a large specimen are shown in Fig. 
5 as functions of  the f2 value (f l  = 50 Hz). It is evident that the optimum time increases with a reduction in the 
frequency difference.  Thus, if suitable technological means are available the choice of the current frequency after 
switching can be used as a factor in process optimization. 
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Fig. 10. Characteristics of the stress field in the 
experimental variant (see Fig. 3). The notation is the same 
as in Fig. 9. 

The above variants also indicate that, under optimum conditions, the temperature drop along the radivs, 0 < r 
< R 2, is not too large either, and the temperature field approaches equilibrium after  the heating ends. 

5. We shall now turn to control of the stress field corresponding to the optimum control with respec: to the 
temperature field. This control can be realized as a result of a direct mathematical experiment for the operating 
parameters chosen above within the framework of any model of the thermomechanical state of  a material. 

Generally speaking, transition of  a metal to the plasticity region must not be neglected in high-temperature 
heating. On the other hand, neglecting the inverse effect  of the stress field on the temperature field, we can consider 
the thermomechanical problem in the quasi-stationary approximation. In this case, the time and, correspondingly, the 
temperature as a function of  the radius, determined by system (1)-(6), constitute functional parameters of the 
thermomechanical equations. 

The stress fields which we calculated for the loading model with linear strain hardening [8] are represented in 
Fig. 6. The thermomechanical parameters of the materials in the specimens, including the instantaneous yield point and 
the tangent modulus in the plasticity region [9, 10], are shown in Fig. 7. 

The fields of  s t r e s s e s  (o'ij , i, j = r, 0, z), strain (eli), and radial displacements (Ur) which depend only on r and 
t are described in each layer by the following system of equations, where daij, etc. are increments of thc initial 
quantities in time: 

O dor~ - -  dooo 
o r  (dG,)  4 = O, (10) 

r 

dsij  = d~ 5 -j- de~ 

(where the superscript E pertains to elastic, and the superscript P to plastic, strain), 

(ll) 

Here, 

3 
de~.-- 2 

de/~ -- 1 [(1 + ~ (T)) da,j - -  v (T) 6udahht - -  
E (T) 

- - -L- - I .  [(1 "-k v (T)) tri~ - -  v (T )  6ijakh] OE (T_______~) dT q- 
E z (T) 8T 

1 Ov (T) dT q- 6 # z  (T) dT q- 6ijT Oct (T) dT; E (r------) ( o , j -  6,j(rhh ) OT o-----T~ 

1 
(Yij - -  T ~tJ(~kk 

at ( E s (T) E (T) , 

derr -- ff-~ (dUr) , deoo -- dtG 

d% ) 
OT dT ; 

(12) 

(13) 
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The value of  d%,. depends only on time, while the axial resultant is equal to zero: 

R, 
~ d ~ r d r  = O. 
0 

(15) 

It is assumed that the values of  aij, eij , and u r are known at the initial instant of  time and that the following 

conditions are satisfied at the boundaries: du r I r =o = 0, [dUr] r = R1 = 0, [darr]r = R1 = 0, and dart I r = R2 = 0. 
The nonlinear system (10)-(13) is solved for each time segment in the elastoplastic region by using the well- 

known method of additional strain [ 11 ]. Depending on the behavior of  the temperature  field, local return to the elastic 
region is possible. The criterion indicating that a purely elastic field is to be calculated consists of  the following 
conditions that can be verif ied at each time step: 

_ _ ( ' d ( ~ T  ~ 
dT. o, (~', r )<%(~f,  T) or ~,(~, T)= 0.T(~, r), d~,< \ - -~-;_~ 

During the return to the elastic region, the plastic strain (if such has occurred) is memorized and is thus stored, along 
with the e Pi value. 

The purely elastic fields are calculated by reducing system (l 0)-(15) f o r  dePij  -- 0 to the boundary-value  problem 
for a system of  two integrodifferential  equations with respect to du r and deE,., which is solved by using the difference 
t r ia l -and-er ror  method. 

After  f inding the time increments of  the sought quantities, we determine the values of  the latter at the next (k- 
th) time segment in the obvious m a n n e r :  oij(k) = ~ij (k-l) + daij (k), etc. 

We shall now discuss the results of  the mathematical  experiment.  
F o r  one of  the geometric configuration variants and an f value, Fig. 8 shows the distributions of  the stress tensor 

components along the radius, in comparison with the temperature field distribution at d i f ferent  instants of  time, 
corresponding to the max imum values of  the stress drop in the outside layer of  the bimetal. 

According to the statement of  the problem, Orr is a continuous function of  the radius, while a00 and a H display 
discontinuities in view of the natural continuity of displacements at the interface between layers with different 
characteristics. The stress drop for  any component ,  in particular, in the outside layer, does not exceed -200  MPa (20 
kg/mm2). 

Figure 9 provides the distribution of the stress field intensity as a function of t ime for another opt imum control 
variant (see Fig. 4) in comparison with the yield point of  the materials in the model chosen. The intensity a i also has a 

discontinuity at the r = R 1 boundary.  
It is evident that a i nowhere exceeds -230 MPa (23 k g / m m  z) and at no time exceeds the yield point in the 

outside layer. The core of  the bimetal is at times in the plasticity region. However,  af ter  the heating ends, it also returns 
to the elastic state. This means that the residual stresses in the core cannot be large, while they are completely absent 
in the outside (operating) layer. 

The corresponding characteristics of  the stress field for the experimental  variant (see Fig. 3) are shown in Fig. 
10. The stress intensity in the outside layer is also in this case lower than the yield point for the material in question. 

The stability of  these results for sufficiently wide ranges of  the parameters: 25 mm _< R 1 _< 40 ram, 5 mm ___ 
Rg--R 1 _< 10 mm,  50 Hz _< f l  -< 2400 Hz, and 500 Hz < f2 < 10,000 Hz, supports the expected correlation between the 
temperature field drop and the stress field and, thus, the validity of  the statement of  the optimization problem proposed 

above. 
It  should be mentioned that this problem can also be stated directly in terms of stresses. In this ease, the above 

algorithm for  calculating them constitutes the contents of  the data unit program which uses the temperature field 
calculation unit. The stress intensity is considered as the functional of  I: a i = a i [r, t, I]. In statement (9), the following 
can be assumed with an allowance for the jump of a i at the interface: 
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Finally, either the value b 2, which limits the stress, or the function %~ should be substituted for ~2 in (9). 
This statement of the problem is, however, less effective than the preceding one. Moreover, its use presupposes 

knowledge of all the mechanical characteristics of the material in question, which is not always the case [8]. In 
connection with this, it may prove useful to state inverse problems in a manner similar to that used for determining the 
current in section 3 and solve them by means of a certain regularizing algorithm. 
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THERMAL AND THERMODEFORMATIONAL PROCESSES IN THE 

FORCED HEATING OF STEEL 

Yu. A. Malevlch, V. N. Papkovich, P. V. Sevast'yanov, 
D. G. Sedyako, and L. G. Dymova 

UDC 621.785 

The dynamics of metal heating in a furnace of pacing-beam type is investigated experimentally and 
theoretically. 

The heating of metal in a furnace is investigated experimentally, with the aim of subsequent paxametric 
identification of the mathematical model, for the example of steel-15 blooms of cross section 250 x 300 mm. 

In the course of the industrial experiment, the temperature values of control points of the cross section of the 
experimental ingot (corner, surface, center) is determined from the instant of insertion to the removal of the metal, as 
well as the degree of oxidation of surface layers of the steel. The temperature is measured using KhA thermccouples 
with an electrode diameter of 1.2 mm. The productivity of the heating furnace in the experiment is 46.7 ton/h. 

Note that the presence of a positive static pressure in the working space of the furnace eliminates the po:~sibility 
of cold-air inflow. Ignition of the fuel with a consumption coefficient of 1.0-I.1 in these conditions creates an 
atmosphere with weak oxidative properties. This is confirmed by the experimental results: the degree of oxidation of 
the metal is no more than I%. 

Analysis of the components of the thermal balance allows the efficiency of the furnace and the :;pecific 
consumption of the conventional fuel to be determined: 61.5% and 35.2 kg of fuel/ton of steel, respectively. The total 
heat losses through the load with cooling water and with incomplete chemical combustion are no more than I0%, which 
indicates high efficiency of operation of the furnace. 
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